Световая микроскопия — Большая Энциклопедия Нефти и Газа, статья, страница 2

Светлопольная микроскопия

Современная микроскопия имеет большое количество методов, на основании которых функционируют самые различные микроскопы, сферы применения которых весьма различны. И часто возникают споры и дилеммы о том, что же лучше: световой или, как его еще называют, оптический микроскоп, либо же электронный.

Стоит сразу отметить некоторый момент – это частая путаница в понятиях таких, как электронный микроскоп и цифровой. Именно эти понятия так часто можно увидеть, когда их употребляют в неуместном варианте.

Основные характеристики светового микроскопа

Метод световой микроскопии весьма распространен и пой сей день в некоторых отраслях науки и техники.

Оптический микроскоп состоит из окуляра, объектива, предметного столика, осветителя и конденсора. В результате прохождение лучей света через объект, изображение попадает в объектив и визуализируется в окуляре микроскопа.

Сравнение электронного и светового микроскопа

Цифровые микроскопы – это лишь оборудование, которое выводит получаемое изображение из оптического микроскопа на экран монитора компьютера, при помощи чего исследователь может детально рассмотреть нюансы объекта. А электронный микроскоп имеет совершенно иной метод получения изображения: через объект проходят не световые лучи, а электроны, которые, ударяясь о поверхность объекта, формируют нюансы его поверхности и структурных особенностей. Они строят геометрический образ изучаемого объекта.

Световой микроскоп (оптический) — преимущества и недостатки

Конечно же, у оптического микроскопа есть свои преимущества, а также недостатки. Однако, каждый покупатель, выбирая такое оборудование, должен отталкиваться от его потребностей, а также сферы, в которой будет работать микроскоп, от направленности лаборатории.

Если речь идет о базовых задачах микроскопа, как, например, его использование в лаборатории школы института, которое обусловливает обучающие цели, тогда, конечно же, выбор падает на оптический (световой) микроскоп. В световой микроскоп можно увидеть все, чего требует базовая школьная программа по биологии.

Естественно, что покупка для таких целей какого-либо другого типа и класса оборудования просто необоснованно. Если же речь идет о какой-либо исследовательской лаборатории, где необходимы нюансы микроскопического строения объекта, как, например, в области вирусологии, криобиологии, томографии, либо нейрохирургии или же других узкоспециализированных областей, тогда, естественно, световой микроскоп будет неуместен для использования в таких направлениях деятельности.

Что это означает: преимущества светового микроскопа? Это означает лишь одно – о преимуществах либо недостатках конкретного вида микроскопа можно говорить только опираясь на сферу, в которой он будет использоваться. Так как. Например, в школьном кабинете биологии просто нецелесообразно использование дорогого, практически недоступного электронного микроскопа, когда можно использовать дешевый световой прибор, а в научно-исследовательском институте просто недопустимо и бесполезно будет использование оптического простого микроскопа, который попросту не даст никаких результатов в конкретной научной деятельности, так как его увеличения и разрешения просто не будет хватать для такой работы.

Преимущество светового микроскопа перед электронным

Если попросить работника лаборатории «определи преимущество использования световой микроскопии перед электронной», то даже начинающий исследователь сможет назвать основные плюсы работы с таким видом оборудования.

  • Ценовая политика. В этом аспекте световому микроскопу просто нет равных. Конечно же, обычный оптический микроскоп – это сравнительно бюджетный вариант, который позволит получить базовые возможности в сфере микроскопии объектов. Цена может значительно варьировать, микроскопы можно приобрести от трех-пяти тысяч, достигая пятидесяти-шестидесяти тысяч рублей. И именно такая доступность данного вида оборудования делает световой микроскоп довольно востребованным инструментов для лаборатории, нуждающейся в базовых моментах микроскопии объектов, подлежащих изучению.
  • Компактные габариты оборудования. Габариты такого оборудования для микроскопии в учебном классе средней школы составляют около 50 сантиметров в высоту и удобно размещаются на учебном столе школы.
  • Доступность и простота микроскопии. Действительно, микроскопированию объектов на оптическом микроскопе может научиться даже ребенок. Прозрачные объекты такие, как срез различных растений, простейшие микроорганизмы, рассматриваются при помощи проходящего света, а непрозрачные объекты, например, плата рассматриваются при помощи при помощи отраженного света.

Преимущества световой микроскопии

Микроскоп и микроскопические методы исследования

Световая микроскопия

Для обнаружения и исследования микроорганизмов применяют микроскопы. Световые микроскопы предназначены для изучения микроорганизмов, которые имеют размеры не менее 0,2 мкм (бактерии, простейшие и т. п.) a электронные для изучения более мелких микроорганизмов (вирусы) и мельчайших структур бактерий.
Современные световые микроскопы — это сложные оптические приборы, обращение с которыми требует определенных знаний, навыков и большой аккуратности.
Световые микроскопы подразделяются на студенческие, рабочие, лабораторные и исследовательские, различающиеся по конструкции и комплектации оптикой. Отечественные микроскопы (Биолам», «Бимам», «Микмед») имеют обозначения, указывающие, к какой группе они относятся (С — студенческие, Р — рабочие, Л — лабораторные, И — исследовательские), комплектация обозначается цифрой.

В микроскопе различают механическую и оптическую части.
К механической части относятся: штатив (состоящий из основания и тубусодержателя) и укрепленные на нем тубус с револьвером для крепления и смены объективов, предметный столик для препарата, приспособления для крепления конденсора и светофильтров, а также встроенные в штатив механизмы для грубого (макромеханизм, макровинт) и тонкого
(микромеханизм, микровинт) перемещения предметного столика или тубусодержателя.
Оптическая часть микроскопа представлена объективами, окулярами и осветительной системой, которая в свою очередь состоит из расположенных под предметным столиком конденсора Аббе, зеркала, имеющего плоскую и вогнутую сторону, а также отдельного или встроенного осветителя. Объективы ввинчиваются в револьвер, а соответствующий окуляр, через который наблюдают изображение, устанавливают с противоположной стороны тубуса. Различают монокулярный (имеющий один окуляр) и бинокулярный (имеющий два одинаковых окуляра) тубусы.

Читайте также:  Автоматическая расшифровка общего анализа крови, нормы, отклонения от нормы

Принципиальная схема микроскопа и осветительной системы

1. Источник света;
2. Коллектор;
3. Ирисовая полевая диафрагма;
4. Зеркало;
5. Ирисовая аппертурная диафрагма;
6. Конденбсор;
7. Препарат;
7′. Увеличенное действительное промежуточное изображение препарата, образуемое ; объективом;
7». Увеличенное мнимое окончательное изображение препарата, наблюдаемое в окуляре;
8. Объектив;
9. выходной значок объектива;
10. Полевая диафрагма окуляра;
11. Окуляр;
12. Глаз.

Основную роль в получении изображения играет объектив. Он строит увеличенное, действительное и перевернутое изображение объекта. Затем это изображение дополнительно увеличивается при рассматривании его через окуляр, который аналогично обычной лупе дает увеличенное мнимое изображение.
Увеличение микроскопа ориентировочно можно определить, умножая увеличение объектива на увеличение окуляра. Однако увеличение не определяет качества изображения. Качество изображения, его четкость, определяется разрешающей способностью микроскопа, т. е. возможностью различать раздельно две близко расположенные точки. Предел разрешения — минимальное расстояние, на котором эти точки еще видны раздельно,— зависит от длины волны света, которым освещается объект, и числовой апертуры объектива. Числовая апертура, в свою очередь, зависит от угловой апертуры объектива и показателя преломления среды, находящейся между фронтальной линзой объектива и препаратом. Угловая апертура—это максимальный угол, под которым могут попадать в объектив лучи, прошедшие через объект. Чем больше апертура и чем ближе показатель преломления среды, находящейся между объективом и препаратом, к показателю преломления стекла, тем выше разрешающая способность объектива. Если считать апертуру конденсора равной апертуре объектива, то формула разрешающей способности имеет следующий вид:

где R — предел разрешения; — длина волны; NA — числовая апертура.

Различают полезное и бесполезное увеличение. Полезное увеличение обычно равно числовой апертуре объектива, увеличенной в 500—1000 раз. Более высокое окулярное увеличение не выявляет новых деталей и является бесполезным.
В зависимости от среды, которая находится между объективом и препаратом, различают «сухие» объективы малого и среднего увеличения (до 40 х) и иммерсионные с максимальной апертурой и увеличением (90—100 х). «Сухой» объектив — это такой объектив, между фронтальной линзой которого и препаратом, находится воздух.

Особенностью иммерсионных объективов является то, что между фронтальной линзой такого объектива и препаратом помещают иммерсионную жидкость, имеющую показатель преломления такой же, как стекло (или близкий к нему), что обеспечивает увеличение числовой апертуры и разрешающей способности объектива. В качестве иммерсионной жидкости для объективов водной иммерсии используют дистиллированную воду, а для объективов масляной иммерсии—кедровое масло или специальное синтетическое иммерсионное масло. Использование синтетического иммерсионного масла предпочтительнее, поскольку его параметры более точно нормируются, и оно в отличие от кедрового, не засыхает на поверхности фронтальной линзы объектива. Для объективов, работающих в ультрафиолетовой области спектра, в качестве иммерсионной жидкости используют глицерин. Ни в коем случае нельзя пользоваться суррогатами иммерсионного масла и, в частности, вазелиновым маслом.
**Изображение, полученное с помощью линз, обладает различными недостатками: сферической и хроматической аберрациями, кривизной поля изображения и др. В объективах, состоящих из нескольких линз, эти недостатки в той или иной мере исправлены. В зависимости от степени исправления этих недостатков различают объективы ахроматы и более сложные апохроматы. Соответственно объективы, в которых исправлена кривизна поля изображения, называются планахроматами и планапохроматами. Использование этих объективов позволяет получить резкое изображение по всему полю, тогда как изображение, полученное с помощью обычных объективов, не имеет одинаковой резкости в центре и на краях поля зрения. Все характеристики объектива обычно выгравированы на его оправе: собственное увеличение, апертура, тип объектива (АПО — апохромат и т. п.); объективы водной иммерсии имеют обозначение ВИ и белое кольцо вокруг оправы в нижней ее части, объективы масляной иммерсии—обозначение МИ и черное кольцо.
Все объективы рассчитаны для работы с покровным стеклом толщиной 0,17мм.
Толщина покровного стекла особенно влияет на качество изображения при работе с сильными сухими системами (40 х). При работе с иммерсионными объективами нельзя пользоваться покровными стеклами толще 0,17 мм потому, что толщина покровного стекла может оказаться больше, чем рабочее расстояние объектива, и в этом случае, при попытке сфокусировать объектив на препарат, может быть повреждена фронтальная линза объектива.
Окуляры состоят из двух линз и тоже бывают нескольких типов, каждый из которых применяется с определенным типом объектива, дополнительно устраняя недостатки изображения. Тип окуляра и его увеличение обозначены на его оправе.
Конденсор предназначен для того, чтобы сфокусировать на препарате свет от осветителя, направляемый зеркалом микроскопа или осветителя (в случае использования накладного или встроенного осветителя). Одной из деталей конденсора является апертурная диафрагма, которая имеет важное значения для правильного освещения препарата.
Осветитель состоит из низковольтной лампы накаливания с толстой нитью, трансформатора, коллекторной линзы и полевой диафрагмы, от раскрытия, которой зависит диаметр освещенного поля на препарате. Зеркало направляет свет от осветителя в конденсор. Для того чтобы сохранить параллельность лучей, идущих от осветителя в конденсор, необходимо использовать только плоскую сторону зеркала.

Читайте также:  Признаки смерти человека как понять, что человек умирает к

Настройка освещения н фокусировка микроскопа

Качество изображения в значительной мере зависит также от правильного освещения. Существует несколько различных способов освещения препарата при микроскопии. Наиболее распространенным является способ установки света по Келеру, который заключается в следующем:
1) устанавливают осветитель против зеркала микроскопа;
2) включают лампу осветителя и направляют свет на плоское (!) зеркало микроскопа;
3)помещают препарат на предметный столик микроскопа;
4) закрывают зеркало микроскопа листком белой бумаги и фокусируют на нем изображение нити лампы, передвигая патрон лампы в осветителе;
5) убирают лист бумаги с зеркала;
6) закрывают апертурную диафрагму конденсора. Перемещая зеркало и слегка передвигая патрон лампы, фокусируют изображение нити на апертурной диафрагме. Расстояние осветителя от микроскопа должно быть таким, чтобы изображение нити лампы было равно диаметру апертурной диафрагмы конденсора (наблюдать апертурную диафрагму можно с помощью плоского зеркала, помещенного с правой стороны основания микроскопа).
7)открывают апертурную диафрагму конденсора, уменьшают отверстие полевой диафрагмы осветителя и значительно уменьшают накал лампы;
8) при малом увеличении (10х), глядя в окуляр, получают резкое изображение препарата;
9)слегка поворачивая зеркало, переводят изображение полевой диафрагмы, которое имеет вид светлого пятна, в центр поля зрения. Опуская и поднимая конденсор, добиваются получения резкого изображения краев полевой диафрагмы в плоскости препарата (вокруг них может быть видна цветная каемка);
10) раскрывают полевую диафрагму осветителя до краев поля зрения, увеличивают накал нити лампы и слегка (на 1/3) уменьшают раскрытие апертурной диафрагмы конденсора;
11)при смене объектива необходимо проверить настройку света.
После окончания настройки света по Келеру нельзя изменять положение конденсораf раскрытие полевой и апертурной диафрагмы. Освещенность препарата можно регулировать только нейтральными светофильтрами или изменением накала лампы с помощью реостата. Излишнее открытие апертурной диафрагмы конденсора может привести к значительному снижению контраста изображения, а недостаточное — к значительному ухудшению качества изображения (появлению диффракционных колец). Для проверки правильности раскрытия апертурной диафрагмы необходимо удалить окуляр и, глядя в тубус, открыть ее таким образом, чтобы она закрывала светящееся поле на одну треть. Для правильного освещения препарата при работе с объективами малого увеличения (до 10х) необходимо отвинтить и снять верхнюю линзу конденсора.
Внимание! При работе с объективами, дающими большое увеличение — с сильными сухими (40х) и иммерсионными (90х) системами, чтобы не повредить фронтальную линзу, при фокусировке пользуются следующим приемом: наблюдая сбоку, опускают объектив макровинтом почти до соприкосновения с препаратом, затем, глядя в окуляр, макровинтом очень медленно поднимают объектив до появления изображения и с помощью микровинта производят окончательную фокусировку микроскопа.

Уход за микроскопом

При работе с микроскопом нельзя применять большие усилия. Нельзя касаться пальцами поверхности линз, зеркал и светофильтров.
Чтобы предохранить внутренние поверхности объективов, а также призмы тубуса от попадания пыли, необходимо всегда оставлять окуляр в тубусе. При чистке внешних поверхностей линз нужно удалить с них пыль мягкой кисточкой, промытой в эфире. Если необходимо, осторожно протирают поверхности линз хорошо выстиранной, не содержащей остатков мыла, полотняной или батистовой тряпочкой, слегка смоченной чистым бензином, эфиром или специальной смесью для чистки оптики. Не рекомендуется протирать оптику объективов ксилолом, так как это может привести к их расклеиванию.
С зеркал, имеющих наружное серебрение, можно только удалять пыль, сдувая ее резиновой грушей. Протирать их нельзя. Нельзя также самостоятельно развинчивать и разбирать объективы — это приведет к их порче. По окончании работы на микроскопе необходимо тщательно удалить остатки иммерсионного масла с фронтальной линзы объектива указанным выше способом. Затем опустить предметный столик (или конденсор в микроскопах с неподвижным столиком) и накрыть микроскоп чехлом.
Для сохранения внешнего вида микроскопа необходимо периодически протирать его мягкой тряпкой, слегка пропитанной бескислотным вазелином и затем сухой мягкой чистой тряпкой.

Помимо обычной световой микроскопии существуют методы микроскопии, позволяющие изучать неокрашенные микроорганизмы: фазово-контрастная, темнопольная и люминесцентная микроскопия. Для изучения микроорганизмов и их структур, размер которых меньше разрешающей способности светового микроскопа используют электронную микроскопию.

Источники света в оптической микроскопии

В оптической микроскопии источник света играет очень важное значение в формировании изображения. Грамотный выбор источника света позволяет успешно проводить множество исследований, будь то рутинная задача анализа мазка или гистологического препарата, вплоть до сложнейшей многоканальной конфокальной микроскопии. В статье мы рассмотрим самые популярные на сегодняшний момент источники света, преимущества и недостатки «конкурирующих» систем для решения схожих задач, возможности применения того или иного источника света в зависимости от поставленной задачи.

Галогенная лампа (Halogen bulb)

Галогенные лампы в современных микроскопах встречаются наиболее часто, хотя в последнее время их активно вытесняет светодиодное освещение. Их основное применение – светлопольная микроскопия в отраженном и проходящем свете. Поляризационные исследования, решение множества материаловедческих и биологических задач, где необходимо получать изображения в видимом свете без применения флуоресценции.

Галогенная лампа 6V 20W широко используется в рутинных микроскопах проходящего света

В микроскопах используются галогенные лампы различной мощности (от 20 до 100 Вт). Цветовая температура галогенных ламп находится в районе 3400К (100W Philips 7023). Свет галогенных ламп подчеркивает теплые тона, смещен в сторону теплых оттенков, поэтому для получения изображений, приближенных к цветовой температуре дневного освещения, обычно используют цветобалансирующий фильтр (LBD или Daylight filter).

Читайте также:  Как не спутать аппендицит с болью в животе

LBD фильтр для коррекции цветовой температуры 100 Вт галогенной лампы

Достоинства галогенных ламп – малый размер осветителей, отсутствие необходимости активного охлаждения (достаточно пассивной вентиляции), невысокая стоимость и хорошая цветопередача.
К недостаткам можно отнести сравнительно низкую яркость, малый срок службы около 50 часов.

Ртутная флуоресцентная/люминесцентная лампа HBO (Mercury HBO Lamp)

Ртутные газоразрядные лампы высокого давления применяются для получения качественных флуоресцентных изображений. Они в 10-100 раз ярче ламп накаливания и могут обеспечить интенсивное освещение в выбраном диапазоне длин волн по всей видимой и УФ области спекта при использовании соответсвующих фильтров.
Этот источник света очень надежен и дает хорошую плотность светового потока.

Ртутная флуоресцентная лампа HBO 100

Самой популярной ртутной лампой, применяемой в микроскопии, является лампа HBO 100W. Уникальная спектральная характеристика лампы идеально подходит для исследователей, занимающихся флуоресценцией. Только треть спектра испускания лампы находится в видимой области. Около половины спектра лежит в ультрафиолетовой области, поэтому при работе с подобными источниками необходимо уделять должное внимание защите, в первую очередь, глаз исследователя, а во вторую очередь, стойкости к УФ излучению исследуемых препаратов. Остальная часть излучения ртутной лампы рассеивается в виде теплового длинноволнового ИК излучения.

Спектральная интенсивность ртутной лампы HBO 100

Ртутная газоразрядная лампа имеет одно из самых высоких значений яркости среди непрерывно работающих источников света и очень тесно приближена к идеальной модели точечного источника света. Тем не менее, ртутные лампы имеют большие колебания интенсивности, зависящие от эрозии электродов, магнитных полей в помещении, а также периодическое отклонение дуги (флаттер), возникающее из-за конвекционных потоков в парах ртути. Эти особенности ртутной лампы препятствуют ее использованию в количественных оценках флуоресценции (измерение яркости флуоресценции и т.п.)

Ламповый домик ртутной лампы HBO 50. Имеются регулировочные винты настройки положения лампы, зеркала а также мощный радиатор, позволяющий отводить тепловое излучение.

Помимо перечисленных артефактов дуговой природы света ртутной лампы, у нее есть ряд следующих недостатков: малый срок службы (200 часов), значительное изменение спектральной характеристики в зависимости от возраста лампы, необходимость временных промежутков между включениями для полного остывания лампы.
В типовой конфигурации оптического микроскопа, ртутная лампа находится внутри специализированного осветителя, состоящего из корпуса лампы, вогнутого зеркального рефлектора, а также регулируемой системы линз коллектора для фокусировки дуги лампы.

В зависимости от конструкции, ртутный ламповый домик (это микроскопический термин, в английском языке lamphouse) может также содержать фильтры, блокирующие УФ излучение лампы, а также Hot Mirror фильтры для снижения теплового излучения, нагревающего внутренние линзы микроскопа и исследуемый образец.

Ртутная лампа требует тщательной юстировки для освещения образца равномерным полем максимальной интенсивности. Подробно настройка ртутного лампового домика описана в статье «Юстировка лампового домика флуоресцентной лампы HBO».

Металлогалоидные лампы (Metal Halide Arc Lamps)

Сегодня металлогалоидные лампы постепенно вытесняют ртутные и ксеноновые лампы с позиции флуоресцентных источников.

Конструктивно такие осветители выполнены в виде высокопроизводительной дуговой лампы, размещенной на эллиптическом отражателе. Отражатель фокусирует свет на торце жидкого световода для последующей передачи его на вход оптической системы микроскопа. Иногда металлогалоидные осветители дополнены колесами фильтров (filter wheels) для выбора необходимой длины волны возбуждения, а также специальными шиберами и нейтральными фильтрами для коррекции плотности и интенсивности освещения. Спектр металлогалоидной лампы имеет схожие очертания с «ртутным» спектром, однако более сильная межпиковая интенсивность вместе с большей шириной пиков позволяет получать флуоресценцию на 50% мощнее чем ртутные лампы HBO 100.

Спектральная чувствительность металлогалоидной лампы в сравнении со ртутной лампой HBO. Интенсивность пиков металлогалоидной лампы немного ниже, но мощность в межпиковых областях и ширина пиков позволяют получать качественные флуоресцентные изображения.

Металлогалоидные лампы прекрасно подходят для экспериментов с живыми клетками с использованием EGFP (зеленый флуоресцентный белок). Кроме того они производят гораздо более равномерное освещение в пространстве из-за конструкции жидкого световода и конденсора. Более равномерная жизненная характеристика лампы вместе со сроком службы в 2 тысячи часов (против 200 часов у ртутных осветителей) позволяют проводить количественные анализы флуоресценции.

Светодиодные источники света (Light-Emitting Diodes, LEDs)

Светодиодные источники света – самое перспективное направление из новых технологий в микроскопии. Эти универсальные полупроводниковые осветители обладают всеми функциями ламп накаливания и газоразрядных ламп, имея при этом возможность работать от батареек, а также низковольтных и недорогих импульсных блоков питания.

Разнообразные спектральные характеристики LED осветителей позволяют выбрать необходимый светодиод и установить оптимальное возбуждение в диапазоне длин волн, охватывающем ультрафиолетовую, видимую и ближнюю ИК области. Кроме того, новые мощные светодиоды обладают достаточной интенсивностью для получения качественного флуоресцентного изображения.

Спектральная характеристика светодиодов, использующихся в световой микроскопии.

Компактные светодиоды можно комбинировать в одном ламповом блоке для получения мультиканального флуоресцентного изображения, либо для получения UV и видимого изображения.

Светодиодный осветитель, комбинирующий три светодиодных источника при помощи полупрозрачных зеркал. Позволяет работать с мультиканальной флуоресценцией.

Существует возможность устанавливать современные светодиодные осветители в микроскопы заказчика вне зависимости от возраста и состояния прибора. Эта процедура позволяет вывести качество изображения на новый уровень при использовании старой оптики и при минимальных финансовых затратах. Подробнее об этом можно прочитать в статье Модернизация микроскопа. LED Освещение.

Ссылка на основную публикацию
Сборку вирусных частиц впервые засняли на видео znat kak — ЖЖ
Сборка вирионов Смотреть что такое "Сборка вирионов" в других словарях: Вирус гепатита A — ? Вирус Гепатита А Научная классификация...
Сальмонеллез что нужно знать о коварных сальмонеллах
Сальмонеллез: «болезнь сырых яиц» Сальмонеллез — острое инфекционное заболевание, которое характеризуется многообразием клинических проявлений, но в основном ему свойственна характерная...
Самарская городская поликлиника №6 Промышленного района Новости — Вакцины приносят результат!
Вакцины приносят результат! В последнюю неделю апреля Всемирная организация здравоохранения проводит Всемирную неделю иммунизации. Ее девиз в 2017 году: «Вакцины...
Свадебная прическа в КРАСОТУ НАВОЖУ Лаборатория Вашей привлекательности рядом с метро Беляево в Моск
Вечерние прически в салонах красоты в Беляево Вечерние прически в салонах красоты метро Беляево … Дата оказания услуги23 марта 2020...
Adblock detector